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Abstract

Sampling is the process of converting continuous time signals into
discrete numerical values, is fundamental in digital control systems.
Accurate sampling is critical to ensure that the discrete signals used
in digital controllers strictly represent the original continuous
signals without distortion. This paper presents a comparative
analysis of analog signals sampled at rates above and below the
Nyquist rate, emphasizing the impact on signal integrity in both time
and frequency domains. Using MATLAB simulations, the spectrum
of sampled signals is examined to demonstrate how undersampling
leads to aliasing, a phenomenon that introduces distortion and
degrades control system performance and may lead to instability.
The study highlights the importance of selecting appropriate
sampling rates in digital control to avoid aliasing effects, ensuring
an accurate signal representation for reliable control actions.
Simulation results, including MATLAB-generated plots, illustrate
the relationship between sampling rate, aliasing, and signal fidelity,
providing valuable insights for practitioners designing digital
control systems.

Keywords: Sampling, Digital Control, Aliasing, Nyquist Rate,

Signal Spectrum, Fourier Transform, Discrete Signals.
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1. Introduction

Signal sampling is a fundamental process in digital signal
processing (DSP) and digital control systems, involving the
conversion of continuous-time signals into discrete-time sequences
for analysis, estimation, and controller implementation. The
Nyquist-Shannon Sampling Theorem states that a bandlimited
analog signal can be perfectly reconstructed if the sampling
frequency fs is at least twice the highest frequency component fm of
the signal (fs = 2fm) [1]. However, many real-world signals are
not strictly bandlimited, and sampling below this critical rate causes
aliasing overlapping frequency components that lead to distortion
and potential instability in control loops [2].

Accurate sampling of sensor signals and control inputs is vital for
digital control system stability and performance; insufficient rates
can induce delays, degraded response, or instability [3, 4].
Oversampling, sampling well above the Nyquist rate, reduces
aliasing and simplifies anti-aliasing filter design [5]. Contemporary
digital control strategies also employ variable and adaptive sampling
to balance computational load with control accuracy [6, 7, 8].
However, practical implementations must reconcile trade-offs
among sampling frequency, computational complexity, and real-
time constraints. This study addresses these challenges through a
MATLAB-based comparative analysis of analog signal sampling at
various rates relative to the Nyquist criterion. By examining the
resulting frequency spectra, it exhibits the aliasing effects that arise
from inadequate sampling and highlights the need for proper
sampling strategies in digital control applications.

Figure 1 presents a block diagram illustrating the digital control
signal flow, where the continuous-time plant output is sampled,
processed digitally by a controller, and the digital control signal is
converted back to an analog signal to actuate the plant.

y(t) Y51 | Diai u[k] u(t)
., gital . X
ADC “| Controller | ---~ DAC 4

Fig. 1: Digital control system block diagram.
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2. Proof of sampling theorem

Sampling theorem plays a crucial role in modern DSP. The theorem
concerns about the minimum sampling rate required to convert a
continuous time signal to a digital signal, without any or a loss of
information. A continuous time signal can be represented in its
samples and can be recovered back when sampling frequency f; is
greater than or equal to twice of the highest frequency component
of message signal i. e. f; = 2f,,. Consider a continuous time signal
Ix(t), the spectrum of x(t) is a band limited to f,,, Hz, i.e. the
spectrum of x(t) is zero for |w| > f,,,. Sampling of input signal x(t)
can be obtained by multiplying x(t) with an impulse train §(t) of
period Ts. The output of multiplier is a discrete signal called sampled
signal which is represented with y(t) as revealed in figure 2.

. x(t)
f/ XL
> multiplier —>
t 5F y(1)
5(t) y(t)
T:2Ts
Ll
-2Ts -Ts Ts 2Ts t 4’11114’
¥Y(w)
X(w)
4]
g 1] Wy 2w,

Fig. 2: Process of sampling signal.

Here, it can be observed that the sampled signal takes the period of
the impulse function [2]. The process of sampling can be explained
by the following mathematical equations:

Sampled signal, y(t) = x(t).5(t) 1)
The trigonometric Fourier series representation of §(t) is given by:
8(t) ap + ) (ay,cosnwgth, sinnw;g t ) 2
n=1
Where:
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T

_1 f&(t)dt _1 5(0) = ! 5(0)1 (3)
7T B A
2
T
2 [ 2 2
a, = —f S(t)cos nw, dt = —8(0)cosnw,0 = — (4)
TS 3 Ts TS
2 T
2 R 2
b, = —f S(t)sinnwgtdt = —8(0)sinnwg = 0 (5)
T.) T,

Substituting above values in equation 2, yields:
1 /2
6(t) :FS+Z(FSCOS nwg t+0) (6)
n:

Substituting & (t) in equation 1, we obtain:
y(®) = x(6)( + Zieea G cos nws 1)) =
Tis(x(t)Z(cos ws £)x(t)) + 2(cos 2w )x(t) +
2(cos 3t)x(t)) ... o.nn

(1)

Taking the Fourier transform on both sides of equation 7, yields:
1
Y(w) = F(X(a)) + X (w—ws) + X (w+ ws) + X(w —2ws)
’ + X (w+ 2ws)+..)

1
V() == Z w0 X( w — nws)

n=—oo

(8)
Where n=0, +1, £2......

In order to reconstruct signal x(t), input signal spectrum X (w) must
be recovered from sampled signal spectrum Y (w). This is possible
only when there is no overlapping between the cycles of Y (w) [5].
Possibility of sampled frequency spectrum with different conditions
are revealed in figure 3.
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L3 Y(w)
fs > 2fm
/\ /\ /\Over Sampling
-Ws 0 Ws 2ws
N Y(w)
fs = 2fm
Perfect Sampling
-Ws 0 Ws 2ws
S Y((D)
fs < 2fm
/YW\ Under Sampling
-Ws (o] ws 2ws

Fig. 3: Sampling process scenario.

3. How aliasing occurs
To obtain an insight into this phenomenon, Fourier transform of the
sampled signal is analysed and compared with the Fourier transform
of the analog (continuous) signal.
Let x,(t) represents an analog signal with highest frequency
component at Qn, and set (t) represents a periodic impulse train,
with a period T[9], that is:

s(t) = 6(t—nT

® Z (t—nT) o

&(t) is the unit impulse function. If x,(t) is sampled at a period T,
the sampled signal, x4(t), can be represented as the product of the
two [10], that is:

x5 (£) = xg(6). 5(t) = xa(t).z 8(t — nT) (10)

n
Since multiplication in the time domain translates into convolution
in the frequency domain, the relationship between the Fourier
transforms of the three functions is given by:

1
Xs (]Q) = % Xa(jﬂ) * S(jﬂ) (11)
Where Q represents analog frequency. The Fourier transform of
s(t), the periodic impulse train, is a periodic impulse train in the
frequency domain [3], that is:
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SGQ) = ZT”Z 5(0- kﬁ) = 2”2 5@k (12)

k
Carrying out the convolution in the preV|ous equation, results in:

1
X, (9) = 2> XG0 - kjoy) (13)

k

Equation (13) implies that the Fourier transform of a uniformly
sampled signal comprises infinitely many replicas of X,(jQ), each
shifted by integer multiples of the sampling frequency Qs. When
f's < 2f Nyquist, these replicas overlap, causing high-frequency
content to fold into lower bands (aliasing) and rendering ideal
reconstruction impossible. Conversely, if fs > 2f Nyquist, no
overlap occurs and a suitable low-pass filter can perfectly recover
the original spectrum [2], [10]. Figure 4 depicts this effect on an
analog signal’s spectrum.

/T\ N

-2 LLEN

A I R

~2ite -$w 1< 21y

”

No alinang: e > 2-Qy

/\ /i\ o

Aliscong: e < 2-0O
/i\ o
\/\ .
-

Fig. 4: Fourier Transform of an analog signal x,(t).

Aliasing can also be demonstrated in a simpler way, when we
analyze the relationship between the sampled versions of a group of
pure sinusoids [9]. Consider the continuous sinusoid of
frequency w, :

x(t) = sin(w,t) (14)
When sampled at a sampling period T, the resulted sampled
sequence is:
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x(n) = sin(w,nT), n=0,41,4+2,.. (15)

Now consider the group of sinusoids of frequency w, where:

2rk
w:wﬁ%, n=041,42,.. (16)
When sampling any sinusoid signal at a sampling period T:
2wk
y(t) = sin((w_o + T)t) a7

This will result in a sequence which is identical to the sampled
sequence of frequency w,. To see that, we observe:

o 2wk o "
y(n) = sin (WO + T) nT | = sin((wonT)2 n)) (18)

= sin(wynT)

A continuous signal x(t) and any sinusoid y(t) with frequency
separated by an integer multiple of Qs become indistinguishable
when sampled at interval T. In practice, aliasing occurs as high
frequency components fold into lower frequency bands, preventing
accurate reconstruction [3], [4].

4. Implementation and results

To investigate the effects of sampling rates and aliasing in signals,
particularly within the context of digital control systems, set of
simulations was conducted using MATLAB. The simulations aimed
to illustrate how improper sampling distorts signals and how
oversampling preserves fidelity. The procedure involved the
following two parts:

A. Single-Frequency and Time Domain Analysis

1. Signal definition:

A time vector t was created to span 2 seconds with a sampling
interval T = 1/1000 seconds, corresponding to a sampling
frequency Fs = 1000 Hz. Two cosine signals were generated

using the cos function:

= A 50 Hz cosine wave: x; = cos(2 * pi * 50 * t)
= A 100 Hz cosine wave: x, = cos(2 * pi * 100  t)

Both signals were plotted using plot(t, x) to visualize their shapes
and frequency contents.
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2. Under-sampling Simulation

To demonstrate aliasing, the 50 Hz signal was regenerated using a
lower sampling interval T = 1/200 seconds (Fs = 200 Hz). This
under-sampled signal was plotted alongside the properly sampled
version to highlight aliasing effects. Aliasing manifests as the
sampled waveform appearing to contain incorrect frequency
content.

3. Multi-Rate Comparison

To explore the effect of different sampling frequencies, a 50 Hz
cosine signal was sampled at three rates: 100 Hz, 500 Hz, and 1000
Hz using the following MATLAB code:

* Fs; = 100; Fs, = 500; Fs; = 1000;

= tl = 0:1/Fs;:2; x; = cos(2 *pi*50 *ty);

mt2 = 0:1/Fsy:2; x, = cos(2 *pi*50*t,);

=" t3 = 0:1/Fs3:2;x3 = cos(2 *pi x50 * t3);

These signals were visualized using MATLAB to illustrate the
effects of under-sampling, critical sampling, and oversampling.

4. Visualization and Interpretation

This section offers a detailed interpretation of how sampling
frequency affects signal fidelity in both time and frequency
domains. Each figure corresponds to a specific discussion point,
with implications for digital control system design where accurate
sampling ensures stability and performance.

Figure 5 shows two cosine waves of 50 Hz and 100 Hz, both
sampled at 1000 Hz (sampling time = 1 ms).

Cos(wt), Fs=1000S/s Cos(wt), Fs=1000S/s
19 1 14 o) o
zT ﬁ olo
k] k] o O|o
=} =}
£ o0 = o ?ﬁ Cf Cf © © >
€ £ J) J) J) o1 10)
< .05 50Hz |1 < .05
—© 50Hz |
A — 100 Hz -1 © 100 Hz| @
1.1 1.1 1.12 1.13 1.1 1.1 1.12 1.13
Time (sec) Time (sec)
Fig. 5: Two cosine signals of 50Hz and 100Hz.
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Figure 5 illustrates the distinction between two cosine waveforms of
different frequencies sampled at 1000 Hz. The signal of 50 Hz has a
period T = 20 ms, while the 100 Hz signal has T = 10 ms. the
higher frequency signal completes more cycles over the same
interval and is represented by fewer samples per cycle, reducing
resolution. This illustrates the principle that while sampling above
the Nyquist rate is essential, resolution and phase accuracy may still
be affected at high frequencies [7].

To explore under-sampling, the 50Hz signal was also sampled at
both 1000 Hz and 200 Hz and exhibited in Figure 6.

60Hz Wave: Original vs. Sampled at 200Hz

T

% 0.5 *
=
3 o -
E
< 05 — - 1
Original 50 Hz (1000Hz sampling)
-1 Sampled at 200 Hz .
1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135 1.14
Time (s)

Fig.6: A cosine wave sampled at 200 Hz and 1000 Hz.

Figure 6 reveals that although the waveform sampled at 200 Hz
retains the correct frequency, it appears less smooth and more
polygonal, indicating fewer sampling points per cycle. This finding
supports [8], which notes that sparse sampling distorts waveform
appearance and may degrade system stability in digital control
applications.

Further, the signal was sampled at 500 Hz and plotted in Figure 7,
showing a compromise between resolution and efficiency.

w, Wave: at FS1000Hz VS. F5500Hz

% x\y )
—o—W, 50Hz at TS:1ms{Je
—k -W, 50Hz at TS=2ms

o
3

o

Amplitude

o
[¢;]
T

0.85

'
-
T

1119 112 1.121 . . \
1.1 1.105 1.1 1.115 1.12 1.125 1.13 1.13¢
Time (s)
Fig.7: Cosine wave sampled at 500 Hz compared with at 1000 Hz
10 Copyright © ISTJ Ak ghas poball (3 ia
Ayl g o slell 40 sal) dlaall



http://www.doi.org/10.62341/nass2016

International Scienceand ~ VOlume 36 ) gy pll Al il

Imtrwaational beimrs mad Taviasiags demraal

ﬁ::ﬂﬁéﬂ%’m‘ Part 2 aaal I S T J %

http://www.doi.org/10.62341/nass2016

As depicted in Figure 7, at 500 Hz, the waveform is smoother than
at 200 Hz, though not as precise as at 1000 Hz. This aligns with [11],
highlighting that moderate oversampling can significantly reduce
artifacts without the full cost of very high rates.
To examine further oversampling, a new cosine signal of 50 Hz was
sampled at 2000 Hz, and compared in Figure 8.

w, at Fs1000Hz VS, FSSOOHZ

Q
©
2 . .
a be
£ \ —o—w, 50Hz at T =1ms
. 1 s
W, 50Hz at TS=0.5msﬁ?
1.1 1105 1.11 1115 112 1.125 113

Time (s)

Fig. 8: Comparison of a 50 Hz signal sampled at 1000 Hz and 2000.

Figure 8 reveals that when the waveform sampled at 2000 Hz
exhibits high smoothness and fidelity, but offers minimal structural
improvement over the 1000 Hz version. While beneficial in
applications like high-speed control or digital audio, such
oversampling increases memory and computational demands [12].
These results reinforce modern literature findings [13-18],
confirming that improper sampling (especially under-sampling) can
destabilize control loops and degrade performance in feedback
systems such as robotics and smart grids.

B. Multi-Frequency and Frequency Domain Analysis

To extend the previous analysis, this section evaluates a composite
signal consisting of multiple frequency components—more
representative of real-world digital control and communication
signals. This step is crucial in digital control applications and
communication systems, where signals are typically modulated and
contain a broad spectrum.

1. Composite Signal Generation

Four cosine signals of varying frequencies were simulated, that
IS fi = 50Hz, f, = 100 Hz z, f; = 500 Hz Hz and f, = 1000 Hz.
To emulate modulation, the 50 Hz signal was assigned a
significantly larger amplitude (100 x higher than the others) to act
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as the carrier signal. A composite signal was then constructed by
summing all four cosine signals:

wy; = 100 * cos(2 * pi x50 = t), (as the Carrier signal)

w, = cos(2 *pi * 100 * t)

w3 = cos(2 *pi *500 * t)

w, = cos(2 *pi 1000 * t)

We = Wi+ Wy + wy+ w,

2. Sampling Parameters

Sampling frequency: F; = 20000 Hz
Time vector: t = 0:1/F;:5
Number of samples: N = length(t)

3. Frequency Spectrum Calculation

The FFT was computed as follows:

X = fft(w,); f = (0: N —1) % (F;/N), f isthe Frequency axis.
The FFT reveals each component’s frequency content and
amplitude, crucial for understanding signal behavior under various
sampling conditions.

4. Resampling Scenarios

To test aliasing, the composite signal was resampled at:

F,/13 = 1538 Hz (below Nyquist)

F;/11 = 1818 Hz (near Nyquist)

F,/7 = 2857 Hz (above Nyquist)

Each was plotted in time and frequency domains to observe
distortion.

5. Flowchart and Simulation Summary

Figure 9 represents a flowchart summarizing MATLAB
implementation steps-signal definition, time/frequency vector
generation, FFT computation, and visualization.

The second part of the undertaking work simulates a composite
waveform w: Sampled initially at 20 kHz, its frequency spectrum,
computed via FFT, demonstrates how high frequency content
introduces rapid oscillations and informs realistic signal behavior.
Based on earlier time domain analyses, this section focuses
exclusively on w; to illustrate the combined effects of multiple
frequency components under a high sampling rate.
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Define signal parameters:

~

f‘\r f21 f3’ f4r tr FS

'

Generate time and
frequency vectors

!

Form composite signal

!

Apply FFT

!

P

-

Resampling at different rates

-

J/

!

Compare spectra and
waveforms

Fig.9: The scheme flowchart implemented in Matlab environment.

Figure 10 compares the base 50 Hz carrier and the full composite

waveform w,.

Comparison of w, and w,

100 T

50

1.118 1.

X(t) = 100*cos(wt)

-100

S

\

/

12 1122

—W, (single 50Hz)

— =W, (sum of waves)

11 1.105

1.1

1.12 1.125
Time(sec)

1.115

1.13 1.135

1.14

Fig.10: Time-domain view of w; (50 Hz) and the composite signal w;.

As illustrated in Figure 10, while the waveform appears smooth, its
true frequency complexity is hidden. It exhibits a complex structure,
indicating that the energy of the composite signal is distributed
across its multiple frequency components, but does not significantly
exceed the amplitude of the original carrier. The close amplitude
values also suggest that the modulation process was well-balanced,
avoiding over-modulation which could lead to distortion or signal
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clipping. This characteristic is essential in amplitude-constrained
transmission environments, such as analog communication and
digitally modulated control signals [19]. To discover such
complexity and to gain further insight, an FFT was applied. Figure
11 presents the frequency-domain view of w; and w;.

Comparison of w, and w, in frequency domain

T T T T T T T T T T

100 - T
[ 1|OOH T T T \M T T T @J

—W, (single 50Hz)

—— W, (sum of waves)

Amplitude

]

O L I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000 1100
Frequency (Hz)

Fig. 11: Frequency-domain comparison of w; and w, using FFT.

Figure 11 reveals distinct spectral peaks at 50, 100, 500, and 1000
Hz, confirming the signal’s modulation structure. This highlights
how frequency-domain analysis complements time-domain insights
by revealing hidden periodicities. The multiple frequency
components reflect modulation techniques essential in digital
control systems.

To evaluate the impact of sampling rate, the composite signal was
resampled at F; /7, F,/11, and F,/13, then compared to the original.
Figures 12 -14 show the effect of resampling in the time domain.
Despite visual similarity, frequency content varies significantly.

The w, after resampled at three differnt rates

100 T T T /_,4\ T ]

50

0

100*cos(wt)

-50

X(t)

-100 . =T ‘ . ,
1.1 1.105 1.11 1.115 112 1.125 1.13

Time(sec)

W, (original) e w, (resampled at FS = 2000Hz)
77777 w, (resampled at FS > 2000Hz) — — -W, (resampled at FS < 2000Hz)

Fig.12: Time domain view of w, at different resampling rates.
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t

w, resampled at F_/7 (> 2000Hz)

100

50

=50 F

X(t) = 100*cos{wt)

-100 E

1.208 121 1.212 1.214 1.216 1.218 1.22
Time(sec)
—o W, (original) —-— w, {resampled at F5 = 2000Hz)

Fig.13: Zoomed view of wt sampled at Fs/7.
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Fig.14: w, sampled at F;/11 and F,/13.

This again confirms a key point from earlier sections: time domain
representation alone cannot adequately capture the effects of under-
sampling. Figure 15 provides the FFT of each resampled signal,
making the consequences explicit.
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Fig.15: Frequency domain analysis of w; after resampling.

Sampling at F;/7 preserves all frequency components, consistent
with the Nyquist criterion. However, at F,/11, aliasing becomes
evident most notably with the 1000 Hz component, which is
replaced by an erroneous 800 Hz signal. The distortion is more
severe at F;/13, where under-sampling results in significant
frequency shifts and loss of original content.

This confirms that while time domain plots offer a superficial view,
frequency domain analysis is essential for detecting aliasing and
ensuring signal integrity, especially in digital control applications.
Furthermore, it reinforces our earlier finding that correct sampling
is not merely a mathematical requirement but a practical necessity
for preserving informational accuracy in digitally processed
systems.

This behavior substantiates the Nyquist-Shannon sampling theorem,
which states that the sampling frequency must be at least twice the
highest frequency component present in the signal to avoid aliasing
[20]. As observed, insufficient sampling leads to misrepresentation
of signal content, potentially corrupting any control or
communication data encoded in those frequencies. Conversely,
oversampling—while  resource-intensive  ensures  accurate
reconstruction and robustness against quantization noise.

These findings bear practical implications for digital control systems
and signal transmission networks. Signal fidelity must be balanced
against computational and storage constraints, especially in
embedded and real-time systems. Consequently, choosing an
optimal sampling rate is a design trade-off, where engineers must
consider system bandwidth, power limitations, and processing
capacity [21].
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5. Conclusion

This study explored the influence of sampling rates on controlled

signal fidelity through both time-domain and frequency-domain

analysis. It was demonstrated that:

« Time-domain views offer limited insight, especially in complex

signals.
« FFT-based frequency analysis is essential for detecting aliasing
and spectral distortion.

« Under-sampling leads to significant information loss and control
degradation.

« Oversampling improves accuracy but increases computational
load.

In practical systems, a trade-off must be struck between sampling

fidelity and resource efficiency. The findings underscore the

importance of adaptive and intelligent sampling strategies for

modern control systems, particularly in embedded or resource-

constrained environments.

Future research could include:

« Intelligent sampling via machine learning.

« Wavelet and non-stationary signal analysis.

 Hardware-in-the-loop validation.

By bridging theory with simulation, this work contributes to the

advancement of robust and efficient digital control and signal

analysis systems.
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