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Abstract 

Sampling is the process of converting continuous time signals into 

discrete numerical values, is fundamental in digital control systems. 

Accurate sampling is critical to ensure that the discrete signals used 

in digital controllers strictly represent the original continuous 

signals without distortion. This paper presents a comparative 

analysis of analog signals sampled at rates above and below the 

Nyquist rate, emphasizing the impact on signal integrity in both time 

and frequency domains. Using MATLAB simulations, the spectrum 

of sampled signals is examined to demonstrate how undersampling 

leads to aliasing, a phenomenon that introduces distortion and 

degrades control system performance and may lead to instability. 

The study highlights the importance of selecting appropriate 

sampling rates in digital control to avoid aliasing effects, ensuring 

an accurate signal representation for reliable control actions. 

Simulation results, including MATLAB-generated plots, illustrate 

the relationship between sampling rate, aliasing, and signal fidelity, 

providing valuable insights for practitioners designing digital 

control systems. 

Keywords: Sampling, Digital Control, Aliasing, Nyquist Rate, 

Signal Spectrum, Fourier Transform, Discrete Signals. 

 

 

http://www.doi.org/10.62341/nass2016
mailto:nekreem@gmail.com


 

 Volume 63 العدد

  2Partالمجلد 
 

International Science and 

Technology Journal 

 المجلة الدولية للعلوم والتقنية

http://www.doi.org/10.62341/nass2016 

 

 حقوق الطبع محفوظة 
 لعلوم والتقنية الدولية ل مجلةلل

 

Copyright © ISTJ   2 

 

 باستخدام ماتلاب تحكمشارات الإتأثيرات أخذ العينات على 
 

 ،3سماهر علي النجار ،2، سميح العماري أبوسعد *1نصر بشير عكريم
 4أبوطبيل سرو عمصطفى بن 

 

 1قسم الهندسة الكهربائية والإلكترونية، كلية الهندسة، جامعة الزيتونة، ترهونه – ليبيا
 2قسم هندسة التحكم الآلي، كلية التقنية الإلكترونية، طرابلس- ليبيا

 ليبيا -طرابلس، كلية التقنية الإلكترونية، التحكم الآليقسم هندسة 3
 4قسم الهندسة الكهربائية والإلكترونية، كلية الهندسة، جامعة الزيتونة، ترهونه – ليبيا

 
 الملخص

أخذ العينات، عملية تحويل الإشارات الزمنية المتصلة إلى قيم رقمية متقطعة، تعد هذه العملية 
فهذه العملية تلعب دورا هاما للتأكد من أن الإشارات  ،أساسية في نظم التحكم الرقمية

المتقطعة الداخلة إلى المتحكمات الرقمية تمثل بشكل دقيق الإشارات الأصلية دون تشويه 
وتحتوي جميع البيانات اللازمة المنقولة من الإشارات الأصلية. تقدم هذه الورقة تحليلًا 

والإشارات التي تم انتاجها من خلال محاكات  مقارنًا بين الإشارات التماثلية )المستمرة(
عملية أخذ العينات بترددات عند أعلى وأقل من تردد نيكويست، مع التأكيد على مدى 
تأثير هذه العملية على سلامة الإشارة في المستويين الزمني والترددي. يتم باستخدام بيئة 

MATLAB رة ن كيفية حدوث ظاهمحاكات هذه الإشارات وفحص الطيف الترددي لها لبيا
نتيجة لأخذ العينات بمعدلات أدنى من المعدل  (aliasingالالتباس( )الارتداد )أو 

المطلوب. حيث تؤدي ظاهرة الارتداد إلى تشويه في الاشارات المنقولة مما يؤدي إلى 
تدهور أداء نظام التحكم وفد يسبب عدم استقراره. تسلط الدراسة الضوء على أهمية أخذ 

نات بمعدلات مناسبة في أنظمة التحكم الرقمية لتجنب تأثيرات الارتداد وضمان تمثيل العي
دقيق للإشارة، حتى يتخذ نظام التحكم القرارات المناسبة. توضح النتائج والرسوم البيانية 

العلاقة بين معدل القياس والارتداد ودقة الإشارة، مما يوفر  ،MATLABالمنتَجة باستخدام 
 تصين عند تصميم أنظمة التحكم الرقمية.أساسا للمخ

، معدل نايكويست، طيف الارتدادأخذ العينات، التحكم الرقمي،  الكلمات المفتاحية:
 الإشارة، تحويلات فورير، الإشارات المقطعة.
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1. Introduction 

Signal sampling is a fundamental process in digital signal 

processing (DSP) and digital control systems, involving the 

conversion of continuous-time signals into discrete-time sequences 

for analysis, estimation, and controller implementation. The 

Nyquist-Shannon Sampling Theorem states that a bandlimited 

analog signal can be perfectly reconstructed if the sampling 

frequency fs is at least twice the highest frequency component fm of 

the signal (𝑓𝑠 ≥ 2𝑓𝑚) [1]. However, many real-world signals are 

not strictly bandlimited, and sampling below this critical rate causes 

aliasing overlapping frequency components that lead to distortion 

and potential instability in control loops [2]. 

 

Accurate sampling of sensor signals and control inputs is vital for 

digital control system stability and performance; insufficient rates 

can induce delays, degraded response, or instability [3, 4]. 

Oversampling, sampling well above the Nyquist rate, reduces 

aliasing and simplifies anti-aliasing filter design [5]. Contemporary 

digital control strategies also employ variable and adaptive sampling 

to balance computational load with control accuracy [6, 7, 8]. 

However, practical implementations must reconcile trade-offs 

among sampling frequency, computational complexity, and real-

time constraints. This study addresses these challenges through a 

MATLAB-based comparative analysis of analog signal sampling at 

various rates relative to the Nyquist criterion. By examining the 

resulting frequency spectra, it exhibits the aliasing effects that arise 

from inadequate sampling and highlights the need for proper 

sampling strategies in digital control applications. 

 

Figure 1 presents a block diagram illustrating the digital control 

signal flow, where the continuous-time plant output is sampled, 

processed digitally by a controller, and the digital control signal is 

converted back to an analog signal to actuate the plant. 
 

 
Fig. 1: Digital control system block diagram. 
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2. Proof of sampling theorem 

Sampling theorem plays a crucial role in modern DSP. The theorem 

concerns about the minimum sampling rate required to convert a 

continuous time signal to a digital signal, without any or a loss of 

information. A continuous time signal can be represented in its 

samples and can be recovered back when sampling frequency 𝑓𝑠 is 

greater than or equal to twice of the highest frequency component 

of message signal i. e. 𝑓𝑠 ≥ 2𝑓𝑚. Consider a continuous time signal 

l𝑥(𝑡), the spectrum of 𝑥(𝑡) is a band limited to 𝑓𝑚 Hz, i.e. the 

spectrum of 𝑥(𝑡) is zero for |𝜔| > 𝑓𝑚. Sampling of input signal 𝑥(𝑡) 

can be obtained by multiplying 𝑥(𝑡) with an impulse train 𝛿(𝑡) of 

period 𝑇𝑠. The output of multiplier is a discrete signal called sampled 

signal which is represented with 𝑦(𝑡) as revealed in figure 2.  

 
Fig. 2: Process of sampling signal. 

 

Here, it can be observed that the sampled signal takes the period of 

the impulse function [2]. The process of sampling can be explained 

by the following mathematical equations: 

 

Sampled signal,  𝑦(𝑡)  =  𝑥(𝑡). 𝛿(𝑡) (1) 

The trigonometric Fourier series representation of 𝛿(𝑡) is given by: 

 
δ(t) 𝑎0 + ∑(𝑎𝑛 cos n𝑤𝑠 𝑡𝑏𝑛 sin 𝑛𝑤𝑠 𝑡  )

∞

𝑛=1

 (2) 

Where: 
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 𝑎0 =
1

𝑇𝑠
∫ δ(t)𝑑𝑡

𝑇

2

𝑇

2

=
1

𝑇𝑠
δ(0) =

1

𝑇𝑠
  , δ(0)1  (3) 

     𝑎𝑛 =
2

𝑇𝑠
∫ 𝛿(𝑡)𝑐𝑜𝑠 𝑛𝑤𝑠 𝑑𝑡

𝑇

2

𝑇

2

=
2

𝑇𝑠
𝛿(0)𝑐𝑜𝑠𝑛𝑤𝑠0 =

2

𝑇𝑠
    (4) 

         𝑏𝑛 =
2

𝑇𝑠
∫ δ(t)sinn𝑤𝑠𝑡𝑑𝑡

𝑇

2

𝑇

2

=
2

𝑇𝑠
δ(0)sin n𝑤𝑠 = 0   (5) 

Substituting above values in equation 2, yields: 

δ(t) =
1

𝑇𝑠
+ ∑ (

2

𝑇𝑠
cos n𝑤𝑠 𝑡 + 0) 

∞

𝑛=1

 
 

(6) 

  

Substituting 𝛿(𝑡) in equation 1, we obtain: 

𝑦(𝑡) = 𝑥(𝑡)( 
1

𝑇𝑠
+ ∑  ∞

𝑛=1 (
2

𝑇𝑠
cos n𝑤𝑠 𝑡)) =

1

𝑇𝑠
(𝑥(𝑡)2(cos 𝑤𝑠 𝑡)𝑥(𝑡)) +  2(cos 2𝑤𝑠 𝑡)𝑥(𝑡) +

2(cos 3 𝑡)𝑥(𝑡)) … ….    

 

(7) 

 

Taking the Fourier transform on both sides of equation 7, yields: 

𝑌(𝜔) =
1

𝑇𝑠
(𝑋(𝜔) + (𝑋(𝜔 − 𝜔𝑆) + (𝑋(𝜔 + 𝜔𝑆) + (𝑋(𝜔 − 2𝜔𝑆)  

+ (𝑋(𝜔 + 2𝜔𝑆)+. . ) 
 

 𝑌(𝜔)  =
1

𝑇𝑠
 ∑ ∞

𝑛=−∞

 𝑋( 𝜔 − 𝑛𝜔𝑆) 
 

(8) 

Where n=0, ±1, ±2…… 

In order to reconstruct signal 𝑥(𝑡), input signal spectrum 𝑋(𝜔) must 

be recovered from sampled signal spectrum 𝑌(𝜔). This is possible 

only when there is no overlapping between the cycles of  𝑌(𝜔) [5].  

Possibility of sampled frequency spectrum with different conditions 

are revealed in figure 3. 
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Fig. 3: Sampling process scenario. 

 

3. How aliasing occurs 

To obtain an insight into this phenomenon, Fourier transform of the 

sampled signal is analysed and compared with the Fourier transform 

of the analog (continuous) signal.  

Let 𝑥𝑎(𝑡) represents an analog signal with highest frequency 

component at Ω𝑛, and set (𝑡) represents a periodic impulse train, 

with a period 𝑇[9], that is: 

 𝑠(𝑡) = ∑ δ(t − nT)

𝑛

  

(9) 

δ(t) is the unit impulse function. If 𝑥𝑎(𝑡) is sampled at a period 𝑇, 

the sampled signal, 𝑥𝑠(t), can be represented as the product of the 

two [10], that is: 

 𝑥𝑠  (𝑡) = 𝑥𝑎(𝑡). 𝑠(𝑡) = 𝑥𝑎(𝑡). ∑ δ(t − nT)

𝑛

 (10) 

Since multiplication in the time domain translates into convolution 

in the frequency domain, the relationship between the Fourier 

transforms of the three functions is given by: 

 

 
        𝑋𝑠  (𝑗Ω) =

1

2𝜋
 𝑋𝑎(𝑗Ω) ∗ S(𝑗Ω) (11) 

Where Ω represents analog frequency. The Fourier transform of 

𝑠(𝑡), the periodic impulse train, is a periodic impulse train in the 

frequency domain [3], that is: 
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 𝑆(𝑗Ω) =

2𝜋

𝑇
∑ 𝛿 (Ω −

𝑘. 2𝜋

𝑇
) =

𝑘

2𝜋

𝑇
∑ 𝛿(Ω − 𝑘Ω𝑠)   

𝑘

 (12) 

Carrying out the convolution in the previous equation, results in: 

 

 
𝑋𝑠  (𝑗Ω) =

1

𝑇
∑ 𝑋𝑎(𝑗Ω − 𝑘jΩ𝑠)

𝑘

 (13) 

Equation (13) implies that the Fourier transform of a uniformly 

sampled signal comprises infinitely many replicas of 𝑋𝑎(𝑗Ω), each 

shifted by integer multiples of the sampling frequency Ω𝑠. When 

𝑓𝑠 < 2f Nyquist, these replicas overlap, causing high-frequency 

content to fold into lower bands (aliasing) and rendering ideal 

reconstruction impossible. Conversely, if 𝑓𝑠 ≥ 2𝑓 Nyquist, no 

overlap occurs and a suitable low-pass filter can perfectly recover 

the original spectrum [2], [10]. Figure 4 depicts this effect on an 

analog signal’s spectrum. 

 

 
Fig. 4: Fourier Transform of an analog signal  𝑥𝑎(t). 

 

Aliasing can also be demonstrated in a simpler way, when we 

analyze the relationship between the sampled versions of a group of 

pure sinusoids [9]. Consider the continuous sinusoid of 

frequency 𝜔𝑜 : 
 

 𝑥(𝑡) = sin (𝜔𝑜𝑡) (14) 

When sampled at a sampling period 𝑇, the resulted sampled 

sequence is: 

http://www.doi.org/10.62341/nass2016
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 𝑥(𝑛) = sin(𝜔𝑜𝑛𝑇) , 𝑛 = 0, ±1, ±2, . .. (15) 

 

Now consider the group of sinusoids of frequency 𝜔, where: 

 

 
𝜔 = 𝜔𝑜 +

2𝜋𝑘

𝑇
, 𝑛 = 0, ±1, ±2, . .. (16) 

When sampling any sinusoid signal at a sampling period 𝑇: 

 
𝑦(𝑡) = 𝑠𝑖𝑛((𝜔_𝑜 +

2𝜋𝑘

𝑇
)𝑡)  (17) 

This will result in a sequence which is identical to the sampled 

sequence of frequency 𝜔𝑜. To see that, we observe: 

 

 
𝑦(𝑛) = sin ((𝑤0 +

2𝜋𝑘

𝑇
) 𝑛𝑇) = sin((𝑤0𝑛𝑇)2 𝜋𝑘𝑛))

= sin(𝑤0𝑛𝑇) 

(18) 

 

A continuous signal 𝑥(𝑡) and any sinusoid 𝑦(𝑡) with frequency 

separated by an integer multiple of Ω𝑠 become indistinguishable 

when sampled at interval 𝑇. In practice, aliasing occurs as high 

frequency components fold into lower frequency bands, preventing 

accurate reconstruction [3], [4]. 

 

4. Implementation and results 

To investigate the effects of sampling rates and aliasing in signals, 

particularly within the context of digital control systems, set of 

simulations was conducted using MATLAB. The simulations aimed 

to illustrate how improper sampling distorts signals and how 

oversampling preserves fidelity. The procedure involved the 

following two parts: 

A. Single-Frequency and Time Domain Analysis 

1. Signal definition: 

A time vector t was created to span 2 seconds with a sampling 

interval T = 1/1000 seconds, corresponding to a sampling 

frequency Fs = 1000 Hz. Two cosine signals were generated 

using the cos function: 

 

 A 50 Hz cosine wave: 𝑥1  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 50 ∗ 𝑡) 

 A 100 Hz cosine wave: 𝑥2  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 100 ∗ 𝑡) 

 

Both signals were plotted using plot(𝑡, 𝑥) to visualize their shapes 

and frequency contents. 

http://www.doi.org/10.62341/nass2016
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2. Under-sampling Simulation 
To demonstrate aliasing, the 50 Hz signal was regenerated using a 

lower sampling interval T = 1/200 seconds (Fs = 200 Hz). This 

under-sampled signal was plotted alongside the properly sampled 

version to highlight aliasing effects. Aliasing manifests as the 

sampled waveform appearing to contain incorrect frequency 

content. 

 

3. Multi-Rate Comparison 
To explore the effect of different sampling frequencies, a 50 Hz 

cosine signal was sampled at three rates: 100 Hz, 500 Hz, and 1000 

Hz using the following MATLAB code: 
 𝐹𝑠1  =  100;  𝐹𝑠2  =  500;  𝐹𝑠3  =  1000; 
 𝑡1 =  0: 1/𝐹𝑠1: 2;  𝑥1  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 50 ∗ 𝑡1); 
 𝑡2 =  0: 1/𝐹𝑠2: 2;  𝑥2  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 50 ∗ 𝑡2); 
 𝑡3 =  0: 1/𝐹𝑠3: 2; 𝑥3  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 50 ∗ 𝑡3); 
These signals were visualized using MATLAB to illustrate the 

effects of under-sampling, critical sampling, and oversampling. 

 

4. Visualization and Interpretation 

This section offers a detailed interpretation of how sampling 

frequency affects signal fidelity in both time and frequency 

domains. Each figure corresponds to a specific discussion point, 

with implications for digital control system design where accurate 

sampling ensures stability and performance. 

Figure 5 shows two cosine waves of 50 Hz and 100 Hz, both 

sampled at 1000 Hz (sampling time =  1 𝑚𝑠).   

 

 
 

Fig. 5: Two cosine signals of 50Hz and 100Hz. 
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Figure 5 illustrates the distinction between two cosine waveforms of 

different frequencies sampled at 1000 Hz. The signal of 50 Hz has a 

period 𝜏 =  20 𝑚𝑠, while the 100 Hz signal has 𝜏 =  10 ms. the 

higher frequency signal completes more cycles over the same 

interval and is represented by fewer samples per cycle, reducing 

resolution. This illustrates the principle that while sampling above 

the Nyquist rate is essential, resolution and phase accuracy may still 

be affected at high frequencies [7]. 

To explore under-sampling, the 50Hz signal was also sampled at 

both 1000 Hz and 200 Hz and exhibited in Figure 6. 

 
Fig.6: A cosine wave sampled at 200 Hz and 1000 Hz. 

      

Figure 6 reveals that although the waveform sampled at 200 Hz 

retains the correct frequency, it appears less smooth and more 

polygonal, indicating fewer sampling points per cycle. This finding 

supports [8], which notes that sparse sampling distorts waveform 

appearance and may degrade system stability in digital control 

applications. 

Further, the signal was sampled at 500 Hz and plotted in Figure 7, 

showing a compromise between resolution and efficiency. 

 
Fig.7: Cosine wave sampled at 500 Hz compared with at 1000 Hz 

http://www.doi.org/10.62341/nass2016
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As depicted in Figure 7, at 500 Hz, the waveform is smoother than 

at 200 Hz, though not as precise as at 1000 Hz. This aligns with [11], 

highlighting that moderate oversampling can significantly reduce 

artifacts without the full cost of very high rates. 

To examine further oversampling, a new cosine signal of 50 Hz was 

sampled at 2000 Hz, and compared in Figure 8.  

 

 
Fig. 8: Comparison of a 50 Hz signal sampled at 1000 Hz and 2000.  

 

Figure 8 reveals that when the waveform sampled at 2000 Hz 

exhibits high smoothness and fidelity, but offers minimal structural 

improvement over the 1000 Hz version. While beneficial in 

applications like high-speed control or digital audio, such 

oversampling increases memory and computational demands [12].  

These results reinforce modern literature findings [13–18], 

confirming that improper sampling (especially under-sampling) can 

destabilize control loops and degrade performance in feedback 

systems such as robotics and smart grids. 

 

B. Multi-Frequency and Frequency Domain Analysis 
To extend the previous analysis, this section evaluates a composite 

signal consisting of multiple frequency components—more 

representative of real-world digital control and communication 

signals. This step is crucial in digital control applications and 

communication systems, where signals are typically modulated and 

contain a broad spectrum. 

1. Composite Signal Generation 

Four cosine signals of varying frequencies were simulated, that 

is 𝑓1 = 50 Hz, 𝑓2 = 100 Hz z, 𝑓3 = 500 Hz  Hz and 𝑓4 = 1000 Hz.  

To emulate modulation, the 50 Hz signal was assigned a 

significantly larger amplitude (100 × higher than the others) to act 
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as the carrier signal. A composite signal was then constructed by 

summing all four cosine signals: 

𝑤1  =  100 ∗  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 50 ∗ 𝑡), (as the Carrier signal)  

𝑤2 =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 100 ∗ 𝑡)  

𝑤3  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 500 ∗ 𝑡)  
𝑤4  =  𝑐𝑜𝑠(2 ∗ 𝑝𝑖 ∗ 1000 ∗ 𝑡) 

𝑤𝑡  =  𝑤1 +  𝑤2  + 𝑤3 + 𝑤4 
 

2. Sampling Parameters 

Sampling frequency: 𝐹𝑠 = 20000 𝐻𝑧 

Time vector: 𝑡 =  0: 1/𝐹𝑠: 5 

Number of samples: 𝑁 =  length(𝑡) 

 

3. Frequency Spectrum Calculation 

The FFT was computed as follows: 

𝑋 =  fft(𝑤𝑡);  𝑓 =  (0: 𝑁 − 1) ∗ (𝐹𝑠/𝑁) ,  𝑓 is the Frequency axis. 

The FFT reveals each component’s frequency content and 

amplitude, crucial for understanding signal behavior under various 

sampling conditions. 

 

4. Resampling Scenarios 

To test aliasing, the composite signal was resampled at: 

𝐹𝑠/13 ≈ 1538 Hz (below Nyquist) 

𝐹𝑠/11 ≈ 1818 Hz (near Nyquist) 

𝐹𝑠/7 ≈ 2857 Hz (above Nyquist) 

Each was plotted in time and frequency domains to observe 

distortion. 

 

5. Flowchart and Simulation Summary 

Figure 9 represents a flowchart summarizing MATLAB 

implementation steps-signal definition, time/frequency vector 

generation, FFT computation, and visualization. 

The second part of the undertaking work simulates a composite 

waveform wt Sampled initially at 20 kHz, its frequency spectrum, 

computed via FFT, demonstrates how high frequency content 

introduces rapid oscillations and informs realistic signal behavior. 

Based on earlier time domain analyses, this section focuses 

exclusively on wt  to illustrate the combined effects of multiple 

frequency components under a high sampling rate. 
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Fig.9: The scheme flowchart implemented in Matlab environment. 

 

Figure 10 compares the base 50 Hz carrier and the full composite 

waveform 𝑤𝑡. 
 

 
Fig.10: Time-domain view of 𝑤1 (50 Hz) and the composite signal 𝑤𝑡. 

 

As illustrated in Figure 10, while the waveform appears smooth, its 

true frequency complexity is hidden. It exhibits a complex structure, 

indicating that the energy of the composite signal is distributed 

across its multiple frequency components, but does not significantly 

exceed the amplitude of the original carrier. The close amplitude 

values also suggest that the modulation process was well-balanced, 

avoiding over-modulation which could lead to distortion or signal 
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clipping. This characteristic is essential in amplitude-constrained 

transmission environments, such as analog communication and 

digitally modulated control signals [19]. To discover such 

complexity and to gain further insight, an FFT was applied. Figure 

11 presents the frequency-domain view of 𝑤1 and 𝑤𝑡. 
 

 
Fig. 11: Frequency-domain comparison of 𝑤1 and 𝑤𝑡  using FFT. 

 

Figure 11 reveals distinct spectral peaks at 50, 100, 500, and 1000 

Hz, confirming the signal’s modulation structure. This highlights 

how frequency-domain analysis complements time-domain insights 

by revealing hidden periodicities. The multiple frequency 

components reflect modulation techniques essential in digital 

control systems.        

To evaluate the impact of sampling rate, the composite signal was 

resampled at 𝐹𝑠/7, 𝐹𝑠/11, and 𝐹𝑠/13, then compared to the original. 

Figures 12 -14 show the effect of resampling in the time domain. 

Despite visual similarity, frequency content varies significantly. 
 

 
Fig.12: Time domain view of 𝑤𝑡 at different resampling rates. 

http://www.doi.org/10.62341/nass2016
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Fig.13: Zoomed view of wt sampled at 𝐹s/7. 

 

 
Fig.14: 𝑤𝑡   sampled at 𝐹𝑠/11 and 𝐹𝑠/13. 

 

This again confirms a key point from earlier sections: time domain 

representation alone cannot adequately capture the effects of under-

sampling. Figure 15 provides the FFT of each resampled signal, 

making the consequences explicit.  
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Fig.15: Frequency domain analysis of 𝑤𝑡  after resampling. 

 

Sampling at 𝐹𝑠/7 preserves all frequency components, consistent 

with the Nyquist criterion. However, at 𝐹𝑠/11, aliasing becomes 

evident most notably with the 1000 Hz component, which is 

replaced by an erroneous 800 Hz signal. The distortion is more 

severe at 𝐹𝑠/13, where under-sampling results in significant 

frequency shifts and loss of original content. 

This confirms that while time domain plots offer a superficial view, 

frequency domain analysis is essential for detecting aliasing and 

ensuring signal integrity, especially in digital control applications. 

Furthermore, it reinforces our earlier finding that correct sampling 

is not merely a mathematical requirement but a practical necessity 

for preserving informational accuracy in digitally processed 

systems.  

This behavior substantiates the Nyquist-Shannon sampling theorem, 

which states that the sampling frequency must be at least twice the 

highest frequency component present in the signal to avoid aliasing 

[20]. As observed, insufficient sampling leads to misrepresentation 

of signal content, potentially corrupting any control or 

communication data encoded in those frequencies. Conversely, 

oversampling—while resource-intensive ensures accurate 

reconstruction and robustness against quantization noise. 

These findings bear practical implications for digital control systems 

and signal transmission networks. Signal fidelity must be balanced 

against computational and storage constraints, especially in 

embedded and real-time systems. Consequently, choosing an 

optimal sampling rate is a design trade-off, where engineers must 

consider system bandwidth, power limitations, and processing 

capacity [21]. 
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5. Conclusion 

This study explored the influence of sampling rates on controlled 

signal fidelity through both time-domain and frequency-domain 

analysis. It was demonstrated that: 

 Time-domain views offer limited insight, especially in complex 

signals. 

 FFT-based frequency analysis is essential for detecting aliasing 

and spectral distortion. 

 Under-sampling leads to significant information loss and control 

degradation. 

 Oversampling improves accuracy but increases computational 

load. 

In practical systems, a trade-off must be struck between sampling 

fidelity and resource efficiency. The findings underscore the 

importance of adaptive and intelligent sampling strategies for 

modern control systems, particularly in embedded or resource-

constrained environments. 

Future research could include: 

 Intelligent sampling via machine learning. 

 Wavelet and non-stationary signal analysis. 

 Hardware-in-the-loop validation. 

By bridging theory with simulation, this work contributes to the 

advancement of robust and efficient digital control and signal 

analysis systems. 
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